Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
IEEE Trans Pattern Anal Mach Intell ; 43(9): 3108-3125, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33891549

RESUMEN

This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series, which helped sorting out a profusion of AutoML solutions for Deep Learning (DL) that had been introduced in a variety of settings, but lacked fair comparisons. All input data modalities (time series, images, videos, text, tabular) were formatted as tensors and all tasks were multi-label classification problems. Code submissions were executed on hidden tasks, with limited time and computational resources, pushing solutions that get results quickly. In this setting, DL methods dominated, though popular Neural Architecture Search (NAS) was impractical. Solutions relied on fine-tuned pre-trained networks, with architectures matching data modality. Post-challenge tests did not reveal improvements beyond the imposed time limit. While no component is particularly original or novel, a high level modular organization emerged featuring a "meta-learner", "data ingestor", "model selector", "model/learner", and "evaluator". This modularity enabled ablation studies, which revealed the importance of (off-platform) meta-learning, ensembling, and efficient data management. Experiments on heterogeneous module combinations further confirm the (local) optimality of the winning solutions. Our challenge legacy includes an ever-lasting benchmark (http://autodl.chalearn.org), the open-sourced code of the winners, and a free "AutoDL self-service."

2.
IEEE Trans Pattern Anal Mach Intell ; 43(9): 3079-3090, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750687

RESUMEN

While early AutoML frameworks focused on optimizing traditional ML pipelines and their hyperparameters, a recent trend in AutoML is to focus on neural architecture search. In this paper, we introduce Auto-PyTorch, which brings together the best of these two worlds by jointly and robustly optimizing the network architecture and the training hyperparameters to enable fully automated deep learning (AutoDL). Auto-PyTorch achieves state-of-the-art performance on several tabular benchmarks by combining multi-fidelity optimization with portfolio construction for warmstarting and ensembling of deep neural networks (DNNs) and common baselines for tabular data. To thoroughly study our assumptions on how to design such an AutoDL system, we additionally introduce a new benchmark on learning curves for DNNs, dubbed LCBench, and run extensive ablation studies of the full Auto-PyTorch on typical AutoML benchmarks, eventually showing that Auto-PyTorch performs better than several state-of-the-art competitors.

3.
Bioinformatics ; 36(Suppl_1): i242-i250, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32657398

RESUMEN

MOTIVATION: Elucidating the functions of non-coding RNAs by homology has been strongly limited due to fundamental computational and modeling issues. While existing simultaneous alignment and folding (SA&F) algorithms successfully align homologous RNAs with precisely known boundaries (global SA&F), the more pressing problem of identifying new classes of homologous RNAs in the genome (local SA&F) is intrinsically more difficult and much less understood. Typically, the length of local alignments is strongly overestimated and alignment boundaries are dramatically mispredicted. We hypothesize that local SA&F approaches are compromised this way due to a score bias, which is caused by the contribution of RNA structure similarity to their overall alignment score. RESULTS: In the light of this hypothesis, we study pairwise local SA&F for the first time systematically-based on a novel local RNA alignment benchmark set and quality measure. First, we vary the relative influence of structure similarity compared to sequence similarity. Putting more emphasis on the structure component leads to overestimating the length of local alignments. This clearly shows the bias of current scores and strongly hints at the structure component as its origin. Second, we study the interplay of several important scoring parameters by learning parameters for local and global SA&F. The divergence of these optimized parameter sets underlines the fundamental obstacles for local SA&F. Third, by introducing a position-wise correction term in local SA&F, we constructively solve its principal issues. AVAILABILITY AND IMPLEMENTATION: The benchmark data, detailed results and scripts are available at https://github.com/BackofenLab/local_alignment. The RNA alignment tool LocARNA, including the modifications proposed in this work, is available at https://github.com/s-will/LocARNA/releases/tag/v2.0.0RC6. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , ARN , Genoma , ARN/genética , Alineación de Secuencia , Análisis de Secuencia de ARN , Programas Informáticos
4.
Neuroimage ; 220: 117021, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32534126

RESUMEN

Machine learning (ML) methods have the potential to automate clinical EEG analysis. They can be categorized into feature-based (with handcrafted features), and end-to-end approaches (with learned features). Previous studies on EEG pathology decoding have typically analyzed a limited number of features, decoders, or both. For a I) more elaborate feature-based EEG analysis, and II) in-depth comparisons of both approaches, here we first develop a comprehensive feature-based framework, and then compare this framework to state-of-the-art end-to-end methods. To this aim, we apply the proposed feature-based framework and deep neural networks including an EEG-optimized temporal convolutional network (TCN) to the task of pathological versus non-pathological EEG classification. For a robust comparison, we chose the Temple University Hospital (TUH) Abnormal EEG Corpus (v2.0.0), which contains approximately 3000 EEG recordings. The results demonstrate that the proposed feature-based decoding framework can achieve accuracies on the same level as state-of-the-art deep neural networks. We find accuracies across both approaches in an astonishingly narrow range from 81 to 86%. Moreover, visualizations and analyses indicated that both approaches used similar aspects of the data, e.g., delta and theta band power at temporal electrode locations. We argue that the accuracies of current binary EEG pathology decoders could saturate near 90% due to the imperfect inter-rater agreement of the clinical labels, and that such decoders are already clinically useful, such as in areas where clinical EEG experts are rare. We make the proposed feature-based framework available open source and thus offer a new tool for EEG machine learning research.


Asunto(s)
Encefalopatías/diagnóstico , Encéfalo/fisiopatología , Electroencefalografía/métodos , Aprendizaje Automático , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Encefalopatías/fisiopatología , Interfaces Cerebro-Computador , Niño , Preescolar , Bases de Datos Factuales , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Procesamiento de Señales Asistido por Computador , Adulto Joven
5.
Nat Commun ; 11(1): 2468, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424119

RESUMEN

Advances in machine learning (ML) and artificial intelligence (AI) present an opportunity to build better tools and solutions to help address some of the world's most pressing challenges, and deliver positive social impact in accordance with the priorities outlined in the United Nations' 17 Sustainable Development Goals (SDGs). The AI for Social Good (AI4SG) movement aims to establish interdisciplinary partnerships centred around AI applications towards SDGs. We provide a set of guidelines for establishing successful long-term collaborations between AI researchers and application-domain experts, relate them to existing AI4SG projects and identify key opportunities for future AI applications targeted towards social good.

6.
Artif Life ; 26(2): 274-306, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32271631

RESUMEN

Evolution provides a creative fount of complex and subtle adaptations that often surprise the scientists who discover them. However, the creativity of evolution is not limited to the natural world: Artificial organisms evolving in computational environments have also elicited surprise and wonder from the researchers studying them. The process of evolution is an algorithmic process that transcends the substrate in which it occurs. Indeed, many researchers in the field of digital evolution can provide examples of how their evolving algorithms and organisms have creatively subverted their expectations or intentions, exposed unrecognized bugs in their code, produced unexpectedly adaptations, or engaged in behaviors and outcomes, uncannily convergent with ones found in nature. Such stories routinely reveal surprise and creativity by evolution in these digital worlds, but they rarely fit into the standard scientific narrative. Instead they are often treated as mere obstacles to be overcome, rather than results that warrant study in their own right. Bugs are fixed, experiments are refocused, and one-off surprises are collapsed into a single data point. The stories themselves are traded among researchers through oral tradition, but that mode of information transmission is inefficient and prone to error and outright loss. Moreover, the fact that these stories tend to be shared only among practitioners means that many natural scientists do not realize how interesting and lifelike digital organisms are and how natural their evolution can be. To our knowledge, no collection of such anecdotes has been published before. This article is the crowd-sourced product of researchers in the fields of artificial life and evolutionary computation who have provided first-hand accounts of such cases. It thus serves as a written, fact-checked collection of scientifically important and even entertaining stories. In doing so we also present here substantial evidence that the existence and importance of evolutionary surprises extends beyond the natural world, and may indeed be a universal property of all complex evolving systems.


Asunto(s)
Algoritmos , Biología Computacional , Creatividad , Vida , Evolución Biológica
7.
Hum Brain Mapp ; 38(11): 5391-5420, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28782865

RESUMEN

Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end-to-end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end-to-end EEG analysis, but a better understanding of how to design and train ConvNets for end-to-end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task-related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG-based brain mapping. Hum Brain Mapp 38:5391-5420, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/fisiología , Electroencefalografía/métodos , Aprendizaje Automático , Mapeo Encefálico/métodos , Interfaces Cerebro-Computador , Humanos , Imaginación/fisiología , Lenguaje , Actividad Motora/fisiología , Vías Nerviosas/fisiología , Percepción Espacial/fisiología
8.
Water Res ; 47(15): 5670-7, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23863389

RESUMEN

An innovative nanocomposite material is proposed for phosphate recovery from wastewater using magnetic assistance. Superparamagnetic microparticles modified with layered double hydroxide (LDH) ion exchangers of various compositions act as phosphate adsorbers. Magnetic separation and chemical regeneration of the particles allows their reuse, leading to the successful recovery of phosphate. Based upon the preliminary screening of different LDH ion exchanger modifications for phosphate selectivity and uptake capacity, MgFe-Zr LDH coated magnetic particles were chosen for further characterization and application. The adsorption kinetics of phosphate from municipal wastewater was studied in dependence with particle concentration, contact time and pH. Adsorption isotherms were then determined for the selected particle system. Recovery of phosphate and regeneration of the particles was examined via testing a variety of desorption solutions. Reusability of the particles was demonstrated for 15 adsorption/desorption cycles. Adsorption in the range of 75-97% was achieved in each cycle after 1 h contact time. Phosphate recovery and enrichment was possible through repetitive application of the desorption solution. Finally, a pilot scale experiment was carried out by treating 125 L of wastewater with the particles in five subsequent 25 L batches. Solid-liquid separation on this scale was carried out with a high-gradient magnetic filter (HGMF).


Asunto(s)
Hidróxidos/química , Fosfatos/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Adsorción , Cinética
9.
ACS Appl Mater Interfaces ; 4(10): 5633-42, 2012 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-22970866

RESUMEN

The synthesis of a reusable, magnetically switchable nanocomposite microparticle, which can be modified to selectively extract and recover Hg(II) or Cu(II) from water, is reported. Superparamagnetic iron oxide (magnetite) nanoparticles act as the magnetic component in this system, and these nanoparticles were synthesized in a continuous way, allowing their large-scale production. A new process was used to create a silica matrix, confining the magnetite nanoparticles using a cheap silica source [sodium silicate (water glass)]. This results in a well-defined, filigree micrometer-sized nanocomposite via a fast, simple, inexpensive, and upscalable process. Hence, because of the ideal size of the resulting microparticles and their comparably large magnetization, particle extraction from fluids by low-cost magnets is achieved.


Asunto(s)
Cobre/química , Nanopartículas de Magnetita/química , Mercurio/química , Dextranos/química , Iones/química , Silicatos/química , Agua/química
10.
J Mol Biol ; 336(3): 607-24, 2004 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-15095976

RESUMEN

The function of many RNAs depends crucially on their structure. Therefore, the design of RNA molecules with specific structural properties has many potential applications, e.g. in the context of investigating the function of biological RNAs, of creating new ribozymes, or of designing artificial RNA nanostructures. Here, we present a new algorithm for solving the following RNA secondary structure design problem: given a secondary structure, find an RNA sequence (if any) that is predicted to fold to that structure. Unlike the (pseudoknot-free) secondary structure prediction problem, this problem appears to be hard computationally. Our new algorithm, "RNA Secondary Structure Designer (RNA-SSD)", is based on stochastic local search, a prominent general approach for solving hard combinatorial problems. A thorough empirical evaluation on computationally predicted structures of biological sequences and artificially generated RNA structures as well as on empirically modelled structures from the biological literature shows that RNA-SSD substantially out-performs the best known algorithm for this problem, RNAinverse from the Vienna RNA Package. In particular, the new algorithm is able to solve structures, consistently, for which RNAinverse is unable to find solutions. The RNA-SSD software is publically available under the name of RNA Designer at the RNASoft website (www.rnasoft.ca).


Asunto(s)
Algoritmos , Conformación de Ácido Nucleico , ARN/química , Secuencia de Bases , Simulación por Computador , Bases de Datos Genéticas , Modelos Genéticos , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA